Go Back   Armenian Knowledge Base > Thematic forums > Science and Education

Reply
 
Thread Tools

помогите решить
Old 12.05.2008, 06:13   #1
kexhts @nker
 
kexhtsavor's Avatar
 
Join Date: 02 2007
Location: -------------
Posts: 785
Rep Power: 4
Default помогите решить

помогите пожалуйста
Attached Thumbnails
Antiidiot.jpg  

Old 12.05.2008, 06:22   #2
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Sin1/x в аргументе арктангенса или просто умножается на него ?
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 12.05.2008, 06:35   #3
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Странно, вроде бы решение в случае, когда arctg(x)*sin(1/x) тривиальное, но Matematica 5.0 не считает его.....
Короче, когда x ->0, аргумент синуса стремитсья к бесконечности, но синус ограниченная функция, а арктангенс в нуле дает ноль. А произведение ограниченной функции на ноль тоже ноль, поэтому в предле то, что у тебя под корнем дает ноль и ты получаешь вответе Ln2.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 12.05.2008, 06:37   #4
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Во втормо случае, когда у тебя arctg(x*sin(1/x)) овтет тот же. Но теперь у тебя x*sin(1/x)) в пределе дает произведеие ограниченной функции на ноль, что есть ноль, а арктангенс нуля опять ноль.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 12.05.2008, 06:46   #5
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

С Matematica 5.0, проблема решена, я ошибся в написании. Так что мое решение верно.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 12.05.2008, 07:45   #6
kexhts @nker
 
kexhtsavor's Avatar
 
Join Date: 02 2007
Location: -------------
Posts: 785
Rep Power: 4
Default

большое спосибо очень памог

Old 12.05.2008, 12:04   #7
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Да не за что....обращайся, если что
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 04.06.2008, 23:49   #8
Im blond whats ur excuse?
 
Meme's Avatar
 
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
Default

Ребята может кто нибудь знает как решить энто?

1. (i) Suppose f : R^n -> R and g : R^n ->R are two functions such that both are homogenous of degree r: Let h : R^n ->R be a function such that for each x E R^n; h(x) = f(x) + g(x): Show whether the function h is also homogenous of degree r:
__________________
Regardz Megardz

Old 05.06.2008, 10:29   #9
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Quote:
Originally Posted by Meme View Post
Ребята может кто нибудь знает как решить энто?

1. (i) Suppose f : R^n -> R and g : R^n ->R are two functions such that both are homogenous of degree r: Let h : R^n ->R be a function such that for each x E R^n; h(x) = f(x) + g(x): Show whether the function h is also homogenous of degree r:
Lets take arbitrary point x from R^n. Then h(x)=f(x)+g(x). Using homogenousy of functions f and g one has f(a*x)=a^r*f(x) and g(a*x)=a^r*g(x), therefore h(a*x)=f(a*x)+g(a*x)=a^r*f(x)+a^r*g(x)=a^r*(f(x)+g(x))=a^r*h(x).
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 05.06.2008, 12:21   #10
Im blond whats ur excuse?
 
Meme's Avatar
 
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
Default

Quote:
Originally Posted by Monopole View Post
Lets take arbitrary point x from R^n. Then h(x)=f(x)+g(x). Using homogenousy of functions f and g one has f(a*x)=a^r*f(x) and g(a*x)=a^r*g(x), therefore h(a*x)=f(a*x)+g(a*x)=a^r*f(x)+a^r*g(x)=a^r*(f(x)+g(x))=a^r*h(x).
What concerned me in this problem is that h(x) is given as a function of a sum of two other functions of one variable. According to homogenity rule the sum of the exponents of the polynomal should be homogenous of some degree.
I 'coined' a function for f(x) and a function of g(x) then differentiated and messed up everything.

So say we had a product of two functions h(x)=f(x)*g(x), would we again choose an arbitrary point p from the real line and follow the same logic multiplying the two functions?
__________________
Regardz Megardz

Old 05.06.2008, 13:38   #11
Смотри мне прямо в глаза!
 
Monopole's Avatar
 
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
Default

Quote:
Originally Posted by Meme View Post
What concerned me in this problem is that h(x) is given as a function of a sum of two other functions of one variable. According to homogenity rule the sum of the exponents of the polynomal should be homogenous of some degree.
I 'coined' a function for f(x) and a function of g(x) then differentiated and messed up everything.

So say we had a product of two functions h(x)=f(x)*g(x), would we again choose an arbitrary point p from the real line and follow the same logic multiplying the two functions?
Well, we have not a "function of a sum" as you said, we have a function which is given as a sum of two other functions. But, these functionas are both homogeneous functions of the same dergee r. This fact provide the h(x) function to be hmogeneous again with the same degree r.
In case of produc h(x)=f(x)*g(x) we get homogeneous function again, but the dergee will be different.
Suppose f is homogeneous function with degree r, which means f(a*x)=a^r*f(x), and g is homogeneious function with degree q, i.e. g(a*x)=a^q*g(x), then
h(a*x)=f(a*x)g(a*x)=a^rf(x)a^qg(x)=a^(r+q)f(x)g(x)=a^(r+q)h(x).
Therefore, h is homogeneous function with degree r+q.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.

Old 05.06.2008, 17:40   #12
Im blond whats ur excuse?
 
Meme's Avatar
 
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
Default

Quote:
Originally Posted by Monopole View Post
Well, we have not a "function of a sum" as you said, we have a function which is given as a sum of two other functions. But, these functionas are both homogeneous functions of the same dergee r. This fact provide the h(x) function to be hmogeneous again with the same degree r.
In case of produc h(x)=f(x)*g(x) we get homogeneous function again, but the dergee will be different.
Suppose f is homogeneous function with degree r, which means f(a*x)=a^r*f(x), and g is homogeneious function with degree q, i.e. g(a*x)=a^q*g(x), then
h(a*x)=f(a*x)g(a*x)=a^rf(x)a^qg(x)=a^(r+q)f(x)g(x)=a^(r+q)h(x).
Therefore, h is homogeneous function with degree r+q.
Got it sunshine, ta!
__________________
Regardz Megardz
Reply




Реклама:
реклама
Buy text link .

All times are GMT. The time now is 18:07.
Top

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.