 |
помогите решить |
 |
12.05.2008, 06:13
|
#1
|
kexhts @nker
Join Date: 02 2007
Location: -------------
Posts: 785
Rep Power: 4
|
помогите решить
помогите пожалуйста
|
|
|
12.05.2008, 06:22
|
#2
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Sin1/x в аргументе арктангенса или просто умножается на него ?
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
12.05.2008, 06:35
|
#3
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Странно, вроде бы решение в случае, когда arctg(x)*sin(1/x) тривиальное, но Matematica 5.0 не считает его.....
Короче, когда x ->0, аргумент синуса стремитсья к бесконечности, но синус ограниченная функция, а арктангенс в нуле дает ноль. А произведение ограниченной функции на ноль тоже ноль, поэтому в предле то, что у тебя под корнем дает ноль и ты получаешь вответе Ln2.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
12.05.2008, 06:37
|
#4
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Во втормо случае, когда у тебя arctg(x*sin(1/x)) овтет тот же. Но теперь у тебя x*sin(1/x)) в пределе дает произведеие ограниченной функции на ноль, что есть ноль, а арктангенс нуля опять ноль.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
12.05.2008, 06:46
|
#5
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
С Matematica 5.0, проблема решена, я ошибся в написании. Так что мое решение верно.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
12.05.2008, 07:45
|
#6
|
kexhts @nker
Join Date: 02 2007
Location: -------------
Posts: 785
Rep Power: 4
|
большое спосибо очень памог
|
|
|
12.05.2008, 12:04
|
#7
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Да не за что....обращайся, если что
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
04.06.2008, 23:49
|
#8
|
Im blond whats ur excuse?
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
|
Ребята может кто нибудь знает как решить энто?
1. (i) Suppose f : R^n -> R and g : R^n ->R are two functions such that both are homogenous of degree r: Let h : R^n ->R be a function such that for each x E R^n; h(x) = f(x) + g(x): Show whether the function h is also homogenous of degree r:
__________________
Regardz Megardz
|
|
|
05.06.2008, 10:29
|
#9
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Quote:
Originally Posted by Meme
Ребята может кто нибудь знает как решить энто?
1. (i) Suppose f : R^n -> R and g : R^n ->R are two functions such that both are homogenous of degree r: Let h : R^n ->R be a function such that for each x E R^n; h(x) = f(x) + g(x): Show whether the function h is also homogenous of degree r:
|
Lets take arbitrary point x from R^n. Then h(x)=f(x)+g(x). Using homogenousy of functions f and g one has f(a*x)=a^r*f(x) and g(a*x)=a^r*g(x), therefore h(a*x)=f(a*x)+g(a*x)=a^r*f(x)+a^r*g(x)=a^r*(f(x)+g(x))=a^r*h(x).
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
05.06.2008, 12:21
|
#10
|
Im blond whats ur excuse?
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
|
Quote:
Originally Posted by Monopole
Lets take arbitrary point x from R^n. Then h(x)=f(x)+g(x). Using homogenousy of functions f and g one has f(a*x)=a^r*f(x) and g(a*x)=a^r*g(x), therefore h(a*x)=f(a*x)+g(a*x)=a^r*f(x)+a^r*g(x)=a^r*(f(x)+g(x))=a^r*h(x).
|
What concerned me in this problem is that h(x) is given as a function of a sum of two other functions of one variable. According to homogenity rule the sum of the exponents of the polynomal should be homogenous of some degree.
I 'coined' a function for f(x) and a function of g(x) then differentiated and messed up everything.
So say we had a product of two functions h(x)=f(x)*g(x), would we again choose an arbitrary point p from the real line and follow the same logic multiplying the two functions?
__________________
Regardz Megardz
|
|
|
 |
|
 |
05.06.2008, 13:38
|
#11
|
Смотри мне прямо в глаза!
Join Date: 09 2003
Location: Все там будем.....
Age: 48
Posts: 16,499
Rep Power: 8
|
Quote:
Originally Posted by Meme
What concerned me in this problem is that h(x) is given as a function of a sum of two other functions of one variable. According to homogenity rule the sum of the exponents of the polynomal should be homogenous of some degree.
I 'coined' a function for f(x) and a function of g(x) then differentiated and messed up everything.
So say we had a product of two functions h(x)=f(x)*g(x), would we again choose an arbitrary point p from the real line and follow the same logic multiplying the two functions?
|
Well, we have not a "function of a sum" as you said, we have a function which is given as a sum of two other functions. But, these functionas are both homogeneous functions of the same dergee r. This fact provide the h(x) function to be hmogeneous again with the same degree r.
In case of produc h(x)=f(x)*g(x) we get homogeneous function again, but the dergee will be different.
Suppose f is homogeneous function with degree r, which means f(a*x)=a^r*f(x), and g is homogeneious function with degree q, i.e. g(a*x)=a^q*g(x), then
h(a*x)=f(a*x)g(a*x)=a^rf(x)a^qg(x)=a^(r+q)f(x)g(x)=a^(r+q)h(x).
Therefore, h is homogeneous function with degree r+q.
__________________
Богохульник, чревоугодник, прелюбодей, к вашим услугам.
|
|
|
 |
05.06.2008, 17:40
|
#12
|
Im blond whats ur excuse?
Join Date: 11 2006
Location: Earth
Posts: 643
Rep Power: 4
|
Quote:
Originally Posted by Monopole
Well, we have not a "function of a sum" as you said, we have a function which is given as a sum of two other functions. But, these functionas are both homogeneous functions of the same dergee r. This fact provide the h(x) function to be hmogeneous again with the same degree r.
In case of produc h(x)=f(x)*g(x) we get homogeneous function again, but the dergee will be different.
Suppose f is homogeneous function with degree r, which means f(a*x)=a^r*f(x), and g is homogeneious function with degree q, i.e. g(a*x)=a^q*g(x), then
h(a*x)=f(a*x)g(a*x)=a^rf(x)a^qg(x)=a^(r+q)f(x)g(x)=a^(r+q)h(x).
Therefore, h is homogeneous function with degree r+q.
|
Got it sunshine, ta!
__________________
Regardz Megardz
|
|
|
All times are GMT. The time now is 18:07. |
|
|